题目内容
已知m、n是方程x2+3x-4=0的两个根,那么m+n= ,mn= .
一元二次方程x2-4=0的解是( )
A.x1=2,x2=-2 B.x=-2 C.x=2 D.x1=2,x2=0
梯形上下底分别是4,6,则中位线长 .
如图,⊙O的弦AB=8,直径CD⊥AB于M,OM:MD=3:2,E是劣弧CB上一点,连结CE并延长交CE的延长线于点F.求:
(1)⊙O的半径;
(2)求CE•CF的值.
如图,数轴上半径为1的⊙O从原点O开始以每秒1个单位的速度向右运动,同时,距原点右边7个单位有一点P以每秒2个单位的速度向左运动,经过 秒后,点P在⊙O上.
如图,直线AB与MNPQ的四边所在直线分别交于A、B、C、D,则图中的相似三角形有( )
A.4对 B.5对 C.6对 D.7对
本题14分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用共100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
如图,有一座抛物线形拱桥,当水位线在AB位置时,拱顶(即抛物线的顶点)离水面2m,水面宽为4m,水面下降1m后,水面宽为( )
A.5m B.6m C.m D.2m
已知,=8,且<0,则的值等于( )
A. B. C.或11 D.或