题目内容
已知:31=3,32=9,33=27,34=81,35=243,36=729,…,设A=2(3+1)(32+1)(34+1)(38+1)(316+1)+1,则A的个位数字是
1
1
.分析:此题不难发现:3n的个位数字是3,9,7,1四个一循环,所以(3+1)(32+1)(34+1)(38+1)(316+1)的个位是0,则2(3+1)(32+1)(34+1)(38+1)(316+1)+37的个位是0,从而得到A的个位数字.
解答:解:∵3n的个位数字是3,9,7,1四个一循环,
∴(3+1)(32+1)(34+1)(38+1)(316+1)的个位是0,
∴2(3+1)(32+1)(34+1)(38+1)(316+1)+37的个位是0,
∴A=2(3+1)(32+1)(34+1)(38+1)(316+1)+1的个位数字是0+1=1.
故答案为:1.
∴(3+1)(32+1)(34+1)(38+1)(316+1)的个位是0,
∴2(3+1)(32+1)(34+1)(38+1)(316+1)+37的个位是0,
∴A=2(3+1)(32+1)(34+1)(38+1)(316+1)+1的个位数字是0+1=1.
故答案为:1.
点评:考查了尾数特征,此题主要是发现3n的个位数字的循环规律,根据规律进行计算.
练习册系列答案
相关题目