题目内容
【题目】如图,⊙O是△ABC的外接圆,AB经过点O,CD是弦,且CD⊥AB于点F,连接AD,过点B的直线与线段AD的延长线交于点E,且∠E=∠ACF.
(1)若CD=2
, AF=3,求⊙O的周长;
(2)求证:直线BE是⊙O的切线.
![]()
【答案】(1)8π;(2)证明见解析.
【解析】
(1)连接OC.设半径为r,在Rt△OFC中利用勾股定理即可解决问题.
(2)只要证明CD∥EB,即可得到∠AFD=∠ABE=90°,由此可以得出结论.
解:(1)连接OC.设半径为r,
∵OA⊥CD,
∴DF=FC=
,
在RT△OFC中,∵∠OFC=90°,FC=
,OF=r﹣3,OC=r,
∴r2=(r﹣3)2+(
)2 ,
∴r=4,
∴⊙O的周长为8π.
![]()
(2)证明:∵OA⊥CD,
∴DF=FC,AD=AC,∠AFD=90°
∴∠ADC=∠ACD,
∵∠E=∠ACD,
∴∠ADC=∠E,
∴CD∥EB,
∴∠AFD=∠ABE=90°,
∴BE是⊙O的切线.
练习册系列答案
相关题目
【题目】某校八年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书400册.特别值得一提的是李保、王刚两位同学在父母的支持下各捐献了90册图书.班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):
册数 | 4 | 5 | 6 | 7 | 8 | 90 |
人数 | 6 | 8 | 15 | 2 |
(1)分别求出该班级捐献7册图书和8册图书的人数;
(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪个统计量不能反映该班同学捐书册数的一般状况,说明理由.