题目内容

如图,在△ABC中,AB=6,AC=8,BC=10,点D、E分别是边AC、AB上的动点,以DE为直径作⊙O.
(1)如图1,如果DE为△ABC的中位线,试判断BC与⊙O的位置关系,并说明理由;
(2)在BC与⊙O相切的条件下,
①如图2,如果点A与点E重合,试求⊙O的半径;
②如图3,如果DE∥BC,试求⊙O的半径;
③求⊙O的半径的最小值(直接写出答案).
作业宝

解:(1)⊙O与BC相交.理由如下:
如图1,过点E作EF⊥BC于点F.
∵DE是△ABC的中位线,
∴DE∥BC,DE=BC=5,BE=AB=3,
∴⊙O的半径为,DE与BC间的距离就是EF的长度.
∵sin∠B==,即=
∴EF=

∴⊙O与BC相交;

(2)①设⊙O半径为r1
∵⊙O与BC相切,
∴OF⊥BC.
∵Rt△COF∽Rt△CBA,
=,即=
∴r1=3,即⊙O半径为3;
②设⊙O半径为r2
∵BC与⊙O相切,
∴OF⊥BC. 
过点A作AH⊥BC交DE于G,交BC于点H.则GH=OF=r2
AB•AC=BC•AH,即6×8=10×AH,
∴AH=
∵DE∥BC,
∴△AED∽△ABC,
=,即=
=
解得.r2=,即⊙O半径为
③连接OA.要使得⊙O半径最小,则要OA+OF最小,此时,A,O,F三点共线且A,O,F所在直线垂直于BC.
即AO+OF=
即⊙O半径最小为:(AO+OF)=

分析:(1)如图1,过点E作EF⊥BC于点F.利用两平行线间的距离的定义知EF即DE与BC间的距离,由三角形中位线定理求得⊙O的半径,然后通过比较EF与⊙O的半径的大小关系即可确定直线与圆的位置关系;
(2)①设⊙O半径为r1.根据相似三角形Rt△COF∽Rt△CBA的对应边成比例列出比例式=,即=,易求r1=3;
②作直角三角形ABC斜边上的高线AH.利用相似三角形△AED∽△ABC的对应高线之比等于相似比的性质列出比例式=,即=,易求r2=
③当AF⊥BC,即A、O、F三点共线时,⊙O的半径最小.
点评:本题考查了圆的综合题.注意:勾股定理的逆定理、直角三角形的面积、解直角三角形、切线的性质以及“相似三角形的对应边成比例,相似三角形的对应边上高线之比等于相似比”等相似三角形的性质,在本题的解答过程中的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网