题目内容
计算:
(1)
•
=
;
(2)
÷(6xy2)=
;
(3)
•
=
;
(4)
÷
=
(5)(ab-b2)÷
=
(1)
| n2 |
| 5m3 |
| 10m |
| 2n |
| n |
| m2 |
| n |
| m2 |
(2)
| 3xy |
| 4a |
| 1 |
| 8ay |
| 1 |
| 8ay |
(3)
| 4 |
| a2-1 |
| a-1 |
| 6a |
| 2 |
| 3a2+3a |
| 2 |
| 3a2+3a |
(4)
| x2-y2 |
| x |
| x-y |
| x2+xy |
x2+2xy+y2
x2+2xy+y2
;(5)(ab-b2)÷
| a2-b2 |
| a+b |
b
b
.分析:(1)直接约分即可;
(2)先根据成分式的除法法则得到原式=
•
,然后约分即可;
(3)先把a2-1分解因式,然后约分即可;
(4)先把分子和分母分解因式,再把除法运算化为乘法运算,然后约分即可;
(5)先把分子和分母分解因式,再把除法运算化为乘法运算,然后约分即可.
(2)先根据成分式的除法法则得到原式=
| 3xy |
| 4a |
| 1 |
| 6xy2 |
(3)先把a2-1分解因式,然后约分即可;
(4)先把分子和分母分解因式,再把除法运算化为乘法运算,然后约分即可;
(5)先把分子和分母分解因式,再把除法运算化为乘法运算,然后约分即可.
解答:解:(1)原式=
;
(2)原式=
•
=
;
(3)原式=
•
=
=
;
(4)原式=
•
=(x+y)2=x2+2xy+y2;
(5)原式=b(a-b)•
=b.
故答案为
;
;
;x2+2xy+y2;b.
| n |
| m2 |
(2)原式=
| 3xy |
| 4a |
| 1 |
| 6xy2 |
| 1 |
| 8ay |
(3)原式=
| 4 |
| (a+1)(a-1) |
| a-1 |
| 6a |
| 2 |
| 3a(a+1) |
| 2 |
| 3a2+3a |
(4)原式=
| (x+y)(x-y) |
| x |
| x(x+y) |
| x-y |
(5)原式=b(a-b)•
| a+b |
| (a+b)(a-b) |
故答案为
| n |
| m2 |
| 1 |
| 8ay |
| 2 |
| 3a2+3a |
点评:本题考查了分式的乘除法:分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母;分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
练习册系列答案
相关题目