题目内容
如图,将Rt△ABC绕直角顶点C顺时针方向旋转90°到△A′B′C的位置,D,D′分别是AB,A′B′的中点,且,已知AC=8cm,BC=6cm,求线段DD′的长.
阅读一段文字,再回答下列问题:已知在平面内两点的坐标为P1(x1,y1),P2(x2,y2),则该两点间距离公式为.同时,当两点在同一坐标轴上或所在直线平行于x轴、垂直于x轴时,两点间的距离公式可化简成|x2-x1|或|y2-y1|.
(1)若已知两点A(3,3),B(-2,-1),试求A,B两点间的距离;
(2)已知点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,试求M,N两点间的距离;
(3)已知一个三角形各顶点的坐标为A(0,5),B(-3,2),C(3,2),你能判定此三角形的形状吗?试说明理由.
将抛物线绕它的顶点旋转180°,所得抛物线的解析式是( ).
A.
B.
C.
D.
函数的最大值是 .
若方程ax2-3x+2=0有唯一实数解,则a的值为______________.
解方程:
(1)
(2)
已知二次函数y=2(x﹣3)2+1,下列说法:
①其图象的开口向下;
②其图象的对称轴为直线x=﹣3;
③其图象顶点坐标为(3,﹣1);
④当x<3时,y随x的增大而减小.
则其中说法正确的有
A、1个 B、2个 C、3个 D、4个
计算:
(3)
如图,已知抛物线的方程C1:(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2, 2),求实数m的值;
(2)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;
(3)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.