题目内容
如图,过点(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是 .
如图,正方形的边长为4cm,则图中阴影部分的面积为( )cm2.
A.8 B.16 C.4 D.无法确定
如图,菱形的两条对角线分别是BD=6和AC=8,则菱形的周长是 .
【问题情境】
张老师给爱好学习的小林和小兰提出这样一个问题:如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小兰的证明思路是:如图②,过点P作PG⊥CF,垂足为G,通过证明四边形PDFG是矩形,
可得:PD=GF,PE=CG,则PD+PE=CF.
【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
【结论运用】请运用上述解答中所积累的经验和方法完成下列两题:
如图④,在平面直角坐标系中有两条直线l1:y=x+3、l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.
计算(1)化简:(2)解不等式组:.
函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是( )
如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围.
不透明的口袋中装有除颜色外其余均相同的2个白球、2个黄球、4个绿球,从中任取一球出来,它不是黄球的概率是( )
A. B. C. D.
如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3),反比例函数y=(x>0)的图象过点D,点P是一次函数y=kx+3﹣3k(k≠0)的图象与该反比例函数的一个公共点.对于一次函数y=kx+3﹣3k(k≠0),当y随x的增大而增大时,则点P横坐标a的取值范围__________.