题目内容
阅读下列材料,并回答问题:∵| 1 |
| 1×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5×7 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
∴
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 19×21 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 19 |
| 1 |
| 21 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 19 |
| 1 |
| 21 |
=
| 1 |
| 2 |
| 1 |
| 21 |
=
| 10 |
| 21 |
(1)
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 99×101 |
(2)利用类似方法,可求得:
| 1 |
| 1×4 |
| 1 |
| 4×7 |
| 1 |
| 7×10 |
| 1 |
| 19×22 |
(3)受以上启发,请你解下列方程:
| 1 |
| x(x+3) |
| 1 |
| (x+3)(x+6) |
| 1 |
| (x+6)(x+9) |
| 3 |
| x+9 |
分析:(1)根据上面的规律,将原式展开,再进行计算即可;
(2)由已知得
=
(1-
),依此类推,可得出
=
(
-
),再将原式展开计算即可;
(3)由上面的规律将原方程变形为
(
-
+
-
+
-
)=3×
.
(2)由已知得
| 1 |
| 1×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 19×22 |
| 1 |
| 3 |
| 1 |
| 19 |
| 1 |
| 22 |
(3)由上面的规律将原方程变形为
| 1 |
| 3 |
| 1 |
| x |
| 1 |
| x+3 |
| 1 |
| x+3 |
| 1 |
| x+6 |
| 1 |
| x+6 |
| 1 |
| x+9 |
| 1 |
| x+9 |
解答:解:(1)原式=
(1-
)+
(
-
)+…+
(
-
)
=
(1-
+
-
+…+
-
)
=
(1-
)
=
×
=
;
(2)原式=
(1-
)+
(
-
)+…+
(
-
)
=
(1-
+
-
+…+
-
)
=
(1-
)
=
×
=
;
(3)原式可化为
(
-
+
-
+
-
)=3×
,
即
(
-
)=
,
解得x=1,
检验:把x=1代入x(x+9)=10≠0.
∴原方程的解为:x=1.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 99 |
| 1 |
| 101 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 99 |
| 1 |
| 101 |
=
| 1 |
| 2 |
| 1 |
| 101 |
=
| 1 |
| 2 |
| 100 |
| 101 |
| 50 |
| 101 |
(2)原式=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3 |
| 1 |
| 19 |
| 1 |
| 22 |
=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 19 |
| 1 |
| 22 |
=
| 1 |
| 3 |
| 1 |
| 22 |
=
| 1 |
| 3 |
| 21 |
| 22 |
=
| 7 |
| 22 |
(3)原式可化为
| 1 |
| 3 |
| 1 |
| x |
| 1 |
| x+3 |
| 1 |
| x+3 |
| 1 |
| x+6 |
| 1 |
| x+6 |
| 1 |
| x+9 |
| 1 |
| x+9 |
即
| 1 |
| 3 |
| 1 |
| x |
| 1 |
| x+9 |
| 3 |
| x+9 |
解得x=1,
检验:把x=1代入x(x+9)=10≠0.
∴原方程的解为:x=1.
点评:本题考查了解分式方程,先找出规律,在将方程整理是解此题的关键,注意分式方程要验根.
练习册系列答案
相关题目