题目内容

设方程x2-mx+n=0的两个实根分别为x1,x2,而以x12,x22为根的二次方程仍是x2-mx+n=0,则这样的实数对(m,n)个数是(  )
A.2B.3C.4D.0
∵方程x2-mx+n=0的两个实根分别为x1,x2
∴由韦达定理,得
x1•x2=n,x1+x2=m;
又∵x12,x22为根的二次方程仍是x2-mx+n=0,
∴x12•x22=n=n2,即n2-n=0,①
x12+x22=(x1+x22-2x1•x2=m=m2-2n,即m2-2n-m=0,②
由①②,解得
m=2
n=1
m=-1
n=1
m=1
n=0
m=0
n=0

∴这样的实数对(m,n)个数是4个.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网