题目内容
设方程x2-mx+n=0的两个实根分别为x1,x2,而以x12,x22为根的二次方程仍是x2-mx+n=0,则这样的实数对(m,n)个数是( )
| A.2 | B.3 | C.4 | D.0 |
∵方程x2-mx+n=0的两个实根分别为x1,x2,
∴由韦达定理,得
x1•x2=n,x1+x2=m;
又∵x12,x22为根的二次方程仍是x2-mx+n=0,
∴x12•x22=n=n2,即n2-n=0,①
x12+x22=(x1+x2)2-2x1•x2=m=m2-2n,即m2-2n-m=0,②
由①②,解得
,
,
或
,
∴这样的实数对(m,n)个数是4个.
故选C.
∴由韦达定理,得
x1•x2=n,x1+x2=m;
又∵x12,x22为根的二次方程仍是x2-mx+n=0,
∴x12•x22=n=n2,即n2-n=0,①
x12+x22=(x1+x2)2-2x1•x2=m=m2-2n,即m2-2n-m=0,②
由①②,解得
|
|
|
|
∴这样的实数对(m,n)个数是4个.
故选C.
练习册系列答案
相关题目