题目内容
【答案】分析:过点A作AE⊥MN于E,过点C作CF⊥MN于F,则EF=0.2m.由△AEM是等腰直角三角形得出AE=ME,设AE=ME=xm,则MF=(x+0.2)m,FC=(28-x)m.在Rt△MFC中,由tan∠MCF=
,得出
=
,解方程求出x的值,则MN=ME+EN.
解答:
解:过点A作AE⊥MN于E,过点C作CF⊥MN于F,
则EF=AB-CD=1.7-1.5=0.2(m),
在Rt△AEM中,∵∠AEM=90°,∠MAE=45°,
∴AE=ME.
设AE=ME=xm,则MF=(x+0.2)m,FC=(28-x)m.
在Rt△MFC中,∵∠MFC=90°,∠MCF=30°,
∴MF=CF•tan∠MCF,
∴x+0.2=
(28-x),
解得x≈10.0,
∴MN=ME+EN≈10+1.7≈12米.
答:旗杆MN的高度约为12米.
点评:本题考查了解直角三角形的问题.该题是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.
解答:
则EF=AB-CD=1.7-1.5=0.2(m),
在Rt△AEM中,∵∠AEM=90°,∠MAE=45°,
∴AE=ME.
设AE=ME=xm,则MF=(x+0.2)m,FC=(28-x)m.
在Rt△MFC中,∵∠MFC=90°,∠MCF=30°,
∴MF=CF•tan∠MCF,
∴x+0.2=
解得x≈10.0,
∴MN=ME+EN≈10+1.7≈12米.
答:旗杆MN的高度约为12米.
点评:本题考查了解直角三角形的问题.该题是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.
练习册系列答案
相关题目