题目内容
如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是_____________.
投掷一枚普通的正方体骰子,四位同学各自发表了以下见【解析】
①出现“点数为奇数”的概率等于出现“点数为偶数”的概率;
②只要连掷6次,一定会“出现一点”;
③投掷前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大;
④连续投掷3次,出现的点数之和不可能等于19;
其中正确的见解有( )
A.1个 B.2个 C.3个 D.4个
计算:.
如图,已知与是内错角,则下列表达正确的是( )
A. 由直线、被所截而得到的; B. 由直线、被所截而得到的;
C. 由直线、被所截而得到的; D. 由直线、被所截而得到的.
某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.
解答下列问题:
(1)这次抽样调查的样本容量是 ,并补全频数分布直方图;
(2)C组学生的频率为 ,在扇形统计图中D组的圆心角是 度;
(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?
有5张看上去无差别的卡片,上面分别写着0,π, , ,1.333,随机抽取1张,则取出的数是无理数的概率是_______.
若中的和的值都缩小2倍,则分式的值( )
A. 缩小2倍 B. 缩小4倍 C. 扩大2倍 D. 扩大4倍
某厂生产甲、乙两种型号的产品,生产甲种产品1个需用时8s、铜8g;生产乙种产品1个的型号需用时6s、铜16g.如果生产甲、乙两种产品共用时1h、用铜6.4kg,那么甲、乙两种产品共生产了________个.
【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tanα=,求sin2α的值.
小娟是这样解决的:
如图1,在⊙O中,AB是直径,点C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα==.
易得∠BOC=2α.设BC=x,则AC=3x,则AB=x.作CD⊥AB于D,求出CD= (用含x的式子表示),可求得sin2α== .
【问题解决】
已知,如图2,点M、N、P为圆O上的三点,且∠P=β,tanβ =,求sin2β的值.