题目内容
如图,已知△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB=| 3 |
(1)求证:△BFG∽△FEG,并求出BF的长;
(2)观察图形,请你提出一个与点P相关的问题,并进行解答.(根据提出问题的层次和解答过程评分)
分析:(1)在△BFG中,BG=3BC=3,FG=AB=
,在△FEG中,FG=AB=
,EG=1,所以有
=
=
,且二者有一个公共角∠G,所以可得出两三角形相似.
(2)如果问题较为浅显,可以提问求证:∠PCB=∠REC,这个问题只需要运用两直线平行,同位角相等进行解答.此题为发散性题型,不唯一.
| 3 |
| 3 |
| BG |
| FG |
| FG |
| EG |
| 3 |
(2)如果问题较为浅显,可以提问求证:∠PCB=∠REC,这个问题只需要运用两直线平行,同位角相等进行解答.此题为发散性题型,不唯一.
解答:(1)证明:∵△ABC≌△DCE≌△FEG
∴BC=CE=EG=
BG=1,即BG=3
∴FG=AB=
∴
=
=
=
又∠BGF=∠FGE,
∴△BFG∽△FEG,
∵△FEG是等腰三角形,
∴△BFG是等腰三角形,
∴BF=BG=3;
(2)解:A层问题(较浅显的,仅用到了1个知识点).
例如:①求证:∠PCB=∠REB.(或问∠PCB与∠REB是否相等)等;
②求证:PC∥RE,(或问线段PC与RE是否平行)等.
B层问题(有一定思考的,用到了2~3个知识点).
例如:①求证:∠BPC=∠BFG等,求证:BP=PR等;
②求证:△ABP∽△CQP等,求证:△BPC∽△BRE等;
③求证:△ABP∽△DQR等;④求BP:PF的值等.
C层问题(有深刻思考的,用到了4个或4以上知识点,或用到了(1)中结论).
例如:①求证:△ABP≌△ERF;②求证:PQ=RQ等;③求证:△BPC是等腰三角形;
④求证:△PCQ≌△RDQ等;⑤求AP:PC的值等;⑥求BP的长;
⑦求证:PC=
(或求PC的长)等.
A层解答举例:求证:PC∥RE
证明:△ABC≌△DCE
∴∠PCB=∠REB
∴PC∥RE
B层解答举例:求证:BP=PR
证明:∠ACB=∠REB,
∴AC∥DE.
又BC=CE,∴BP=PR.
C层解答举例:求AP:PC的值.
解:AC∥FG,
∴
=
=
∴PC=
,而AC=
,
∴AP=
-
=
,
∴AP:PC=2.
∴BC=CE=EG=
| 1 |
| 3 |
∴FG=AB=
| 3 |
∴
| FG |
| EG |
| BG |
| FG |
| 3 | ||
|
| 3 |
又∠BGF=∠FGE,
∴△BFG∽△FEG,
∵△FEG是等腰三角形,
∴△BFG是等腰三角形,
∴BF=BG=3;
(2)解:A层问题(较浅显的,仅用到了1个知识点).
例如:①求证:∠PCB=∠REB.(或问∠PCB与∠REB是否相等)等;
②求证:PC∥RE,(或问线段PC与RE是否平行)等.
B层问题(有一定思考的,用到了2~3个知识点).
例如:①求证:∠BPC=∠BFG等,求证:BP=PR等;
②求证:△ABP∽△CQP等,求证:△BPC∽△BRE等;
③求证:△ABP∽△DQR等;④求BP:PF的值等.
C层问题(有深刻思考的,用到了4个或4以上知识点,或用到了(1)中结论).
例如:①求证:△ABP≌△ERF;②求证:PQ=RQ等;③求证:△BPC是等腰三角形;
④求证:△PCQ≌△RDQ等;⑤求AP:PC的值等;⑥求BP的长;
⑦求证:PC=
| ||
| 3 |
A层解答举例:求证:PC∥RE
证明:△ABC≌△DCE
∴∠PCB=∠REB
∴PC∥RE
B层解答举例:求证:BP=PR
证明:∠ACB=∠REB,
∴AC∥DE.
又BC=CE,∴BP=PR.
C层解答举例:求AP:PC的值.
解:AC∥FG,
∴
| PC |
| FG |
| BC |
| BG |
| 1 |
| 3 |
∴PC=
| ||
| 3 |
| 3 |
∴AP=
| 3 |
| ||
| 3 |
2
| ||
| 3 |
∴AP:PC=2.
点评:此题主要考查了相似三角形的判定,难易程度适中.
练习册系列答案
相关题目