题目内容
计算:(1-
-
-…-
)(
+
+…+
)-(1-
-
-…-
)(
+
+…+
)=
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2003 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2004 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2004 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2003 |
| 1 |
| 2004 |
| 1 |
| 2004 |
分析:观察(1-
-
-…-
)(
+
+…+
)-(1-
-
-…-
)(
+
+…+
)式子发现,均含有
+
+…+
,故令
+
+…+
=a,原式可转化为(1-a+
)×a-(1-a)×(a-
),进一步化简,可抵消去含有字母a的式子,得出结果
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2003 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2004 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2004 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2003 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2004 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2004 |
| 1 |
| 2004 |
| 1 |
| 2004 |
| 1 |
| 2004 |
解答:解:
+
+…+
=a,
原式=(1-a+
)×a-(1-a)×(a-
),
=a-a2+
-(a-a2-
+
),
=
.
故答案为:
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2004 |
原式=(1-a+
| 1 |
| 2004 |
| 1 |
| 2004 |
=a-a2+
| a |
| 2004 |
| 1 |
| 2004 |
| a |
| 2004 |
=
| 1 |
| 2004 |
故答案为:
| 1 |
| 2004 |
点评:本题考查有理数的混合运算.做好本题的关键是将
+
+…+
作为一个整体a出现,进而简化了做题的工作量,抵消了字母a,求得结果.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2004 |
练习册系列答案
相关题目