ÌâÄ¿ÄÚÈÝ
ÒÑÖª¹ØÓÚxµÄ¶þ´Îº¯Êýy=x2﹣2mx+m2+mµÄͼÏóÓë¹ØÓÚxµÄº¯Êýy=kx+1µÄͼÏó½»ÓÚÁ½µãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£»£¨x1£¼x2£©
£¨1£©µ±k=1£¬m=0£¬1ʱ£¬ÇóABµÄ³¤£»
£¨2£©µ±k=1£¬mΪÈκÎֵʱ£¬²ÂÏëABµÄ³¤ÊÇ·ñ²»±ä£¿²¢Ö¤Ã÷ÄãµÄ²ÂÏ룮
£¨3£©µ±m=0£¬ÎÞÂÛkΪºÎֵʱ£¬²ÂÏë¡÷AOBµÄÐÎ×´£®Ö¤Ã÷ÄãµÄ²ÂÏ룮
£¨Æ½ÃæÄÚÁ½µã¼äµÄ¾àÀ빫ʽ
£©£®
¿¼µã£º
¶þ´Îº¯Êý×ÛºÏÌ⣮
·ÖÎö£º
£¨1£©ÏȽ«k=1£¬m=0·Ö±ð´úÈ룬µÃ³ö¶þ´Îº¯ÊýµÄ½âÎöʽΪy=x2£¬Ö±ÏߵĽâÎöʽΪy=x+1£¬ÁªÁ¢
£¬µÃx2﹣x﹣1=0£¬¸ù¾ÝÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµµÃµ½x1+x2=1£¬x1•x2=﹣1£¬¹ýµãA¡¢B·Ö±ð×÷xÖá¡¢yÖáµÄƽÐÐÏߣ¬Á½Ïß½»ÓÚµãC£¬Ö¤Ã÷¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¸ù¾Ý¹´¹É¶¨ÀíµÃ³öAB=
AC£¬¸ù¾ÝÁ½µã¼ä¾àÀ빫ʽ¼°Íêȫƽ·½¹«Ê½Çó³öAB=
£»Í¬Àí£¬µ±k=1£¬m=1ʱ£¬AB=
£»
£¨2£©µ±k=1£¬mΪÈκÎֵʱ£¬ÁªÁ¢
£¬µÃx2﹣£¨2m+1£©x+m2+m﹣1=0£¬¸ù¾ÝÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµµÃµ½x1+x2=2m+1£¬x1•x2=m2+m﹣1£¬Í¬£¨1£©¿ÉÇó³öAB=
£»
£¨3£©µ±m=0£¬kΪÈÎÒâ³£Êýʱ£¬·ÖÈýÖÖÇé¿öÌÖÂÛ£º¢Ùµ±k=0ʱ£¬ÓÉ
£¬µÃA£¨﹣1£¬1£©£¬B£¨1£¬1£©£¬ÏÔÈ»¡÷AOBΪֱ½ÇÈý½ÇÐΣ»¢Úµ±k=1ʱ£¬ÁªÁ¢
£¬µÃx2﹣x﹣1=0£¬¸ù¾ÝÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµµÃµ½x1+x2=1£¬x1•x2=﹣1£¬Í¬£¨1£©Çó³öAB=
£¬ÔòAB2=10£¬ÔËÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼°Íêȫƽ·½¹«Ê½Çó³öOA2+OB2=10£¬Óɹ´¹É¶¨ÀíµÄÄæ¶¨ÀíÅж¨¡÷AOBΪֱ½ÇÈý½ÇÐΣ»¢Ûµ±kΪÈÎÒâʵÊýʱ£¬ÁªÁ¢
£¬µÃx2﹣kx﹣1=0£¬¸ù¾ÝÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµµÃµ½x1+x2=k£¬x1•x2=﹣1£¬¸ù¾ÝÁ½µã¼ä¾àÀ빫ʽ¼°Íêȫƽ·½¹«Ê½Çó³öAB2=k4+5k2+4£¬OA2+OB2═k4+5k2+4£¬Óɹ´¹É¶¨ÀíµÄÄæ¶¨ÀíÅж¨¡÷AOBΪֱ½ÇÈý½ÇÐΣ®
½â´ð£º
½â£º£¨1£©µ±k=1£¬m=0ʱ£¬Èçͼ£®
ÓÉ
µÃx2﹣x﹣1=0£¬
¡àx1+x2=1£¬x1•x2=﹣1£¬
¹ýµãA¡¢B·Ö±ð×÷xÖá¡¢yÖáµÄƽÐÐÏߣ¬Á½Ïß½»ÓÚµãC£®
¡ßÖ±ÏßABµÄ½âÎöʽΪy=x+1£¬
¡à¡ÏBAC=45¡ã£¬¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àAB=
AC=
|x2﹣x1|=![]()
=
£»
ͬÀí£¬µ±k=1£¬m=1ʱ£¬AB=
£»
£¨2£©²ÂÏ룺µ±k=1£¬mΪÈκÎֵʱ£¬ABµÄ³¤²»±ä£¬¼´AB=
£®ÀíÓÉÈçÏ£º
ÓÉ
£¬µÃx2﹣£¨2m+1£©x+m2+m﹣1=0£¬
¡àx1+x2=2m+1£¬x1•x2=m2+m﹣1£¬
¡àAB=
AC=
|x2﹣x1|=![]()
=
£»
£¨3£©µ±m=0£¬kΪÈÎÒâ³£Êýʱ£¬¡÷AOBΪֱ½ÇÈý½ÇÐΣ¬ÀíÓÉÈçÏ£º
¢Ùµ±k=0ʱ£¬Ôòº¯ÊýµÄͼÏóΪֱÏßy=1£¬
ÓÉ
£¬µÃA£¨﹣1£¬1£©£¬B£¨1£¬1£©£¬
ÏÔÈ»¡÷AOBΪֱ½ÇÈý½ÇÐΣ»
¢Úµ±k=1ʱ£¬ÔòÒ»´Îº¯ÊýΪֱÏßy=x+1£¬
ÓÉ
£¬µÃx2﹣x﹣1=0£¬
¡àx1+x2=1£¬x1•x2=﹣1£¬
¡àAB=
AC=
|x2﹣x1|=![]()
=
£¬
¡àAB2=10£¬
¡ßOA2+OB2=x12+y12+x22+y22
=x12+x22+y12+y22
=x12+x22+£¨x1+1£©2+£¨x2+1£©2
=x12+x22+£¨x12+2x1+1£©+£¨x22+2x2+1£©
=2£¨x12+x22£©+2£¨x1+x2£©+2
=2£¨1+2£©+2¡Á1+2
=10£¬
¡àAB2=OA2+OB2£¬
¡à¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ»
¢Ûµ±kΪÈÎÒâʵÊý£¬¡÷AOBÈÔΪֱ½ÇÈý½ÇÐΣ®
ÓÉ
£¬µÃx2﹣kx﹣1=0£¬
¡àx1+x2=k£¬x1•x2=﹣1£¬
¡àAB2=£¨x1﹣x2£©2+£¨y1﹣y2£©2
=£¨x1﹣x2£©2+£¨kx1﹣kx2£©2
=£¨1+k2£©£¨x1﹣x2£©2
=£¨1+k2£©[£¨x1+x2£©2﹣4x1•x2]
=£¨1+k2£©£¨4+k2£©
=k4+5k2+4£¬
¡ßOA2+OB2=x12+y12+x22+y22
=x12+x22+y12+y22
=x12+x22+£¨kx1+1£©2+£¨kx2+1£©2
=x12+x22+£¨k2x12+2kx1+1£©+£¨k2x22+2kx2+1£©
=£¨1+k2£©£¨x12+x22£©+2k£¨x1+x2£©+2
=£¨1+k2£©£¨k2+2£©+2k•k+2
=k4+5k2+4£¬
¡àAB2=OA2+OB2£¬
¡à¡÷AOBΪֱ½ÇÈý½ÇÐΣ®
![]()
µãÆÀ£º
±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌâÐÍ£¬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµ£¬Æ½ÃæÄÚÁ½µã¼äµÄ¾àÀ빫ʽ£¬Íêȫƽ·½¹«Ê½£¬¹´¹É¶¨ÀíµÄÄæ¶¨Àí£¬ÓÐÒ»¶¨ÄѶȣ®±¾Ìâ¶Ôʽ×ӵıäÐÎÄÜÁ¦ÒªÇó½Ï¸ß£¬ÌåÏÖÁËÓÉÌØÊâµ½Ò»°ãµÄ˼Ï룮