题目内容

如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为(  )

A.a   B.      C.    D.

 

【答案】

C.

【解析】

试题分析:首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为a,进而求出△ACD的面积.

∵∠DAC=∠B,∠C=∠C,

∴△ACD∽△BCA,

∵AB=4,AD=2,

∴△ACD的面积:△ABC的面积为1:4,

∴△ACD的面积:△ABD的面积=1:3,

∵△ABD的面积为a,

∴△ACD的面积为a,

故选C.

考点:相似三角形的判定与性质.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网