题目内容
如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为( )
![]()
A.a B.
C.
D.![]()
【答案】
C.
【解析】
试题分析:首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为a,进而求出△ACD的面积.
∵∠DAC=∠B,∠C=∠C,
∴△ACD∽△BCA,
∵AB=4,AD=2,
∴△ACD的面积:△ABC的面积为1:4,
∴△ACD的面积:△ABD的面积=1:3,
∵△ABD的面积为a,
∴△ACD的面积为
a,
故选C.
考点:相似三角形的判定与性质.
练习册系列答案
相关题目
| A、28° | B、30° | C、31° | D、62° |