题目内容
列方程解应用题
八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.
在半径为的中,弦的长为,则弦所对的圆周角的度数为________.
若,是一元二次方程的两根,则与的值分别是( )
A. , B. , C. , D. ,
如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③.
其中正确的是
A. ①② B. ①③ C. ②③ D. ①②③
若正方形的对角线长为2 cm,则这个正方形的面积为( )
A. 4cm2 B. 2cm2 C. cm2 D. 2cm2
化简计算:(1);(2).
约分:=________.
某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向 A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二: 同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)
(1)若顾客选择方式一,则享受 9 折优惠的概率为_______;
(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.
将下列各数在数轴上表示出来,并把它们用“>”连接起来.
﹣(﹣3),0,﹣|﹣1.25|,,﹣2.