题目内容
【题目】如图,在矩形
中,
,
,
.
分别是线段
,
上的点,连接
,使四边形
为正方形,若点
是
上的动点,连接
,将矩形沿
折叠使得点
落在正方形
的对角线所在的直线上,对应点为
,则线段
的长为________.
![]()
【答案】
或![]()
【解析】
当点P在AF上时,由翻折的性质可求得PF=FC=4,然后再求得正方形的对角线AF的长,从而可得到PA的长;当点P在BE上时,由正方形的性质可知BP为AF的垂直平分线,则AP=PF,由翻折的性质可求得PF=FC=4,故此可得到AP的值.
如图1所示:
![]()
由翻折的性质可知PF=CF=4,
∵ABFE为正方形,边长为2,
∴AF=2
.
∴PA=4-2
.
如图2所示:
![]()
由翻折的性质可知PF=FC=4.
∵ABFE为正方形,
∴BE为AF的垂直平分线.
∴AP=PF=4.
故答案为:4或4-2
.
练习册系列答案
相关题目