题目内容
已知:如图,在平行四边形ABCD中,连接对角线BD,作AE⊥BD于E,CF⊥BD于F,
(1)求证:△AED≌△CFB;
(2)若∠ABC=75°,∠ADB=30°,AE=3,求平行四边形ABCD的周长.

(1)求证:△AED≌△CFB;
(2)若∠ABC=75°,∠ADB=30°,AE=3,求平行四边形ABCD的周长.
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠ADE=∠CBF,
又∵AE⊥BD于E,CF⊥BD于F,
∴∠AED=∠CFB=90°,
在△AED和△CFB中,
,
∴△AED≌△CFB(AAS);
(2)在Rt△AED中,
∵∠ADE=30°,AE=3,
∴AD=2AE=2×3=6,
∵∠ABC=75°,∠ADB=∠CBD=30°
∴∠ABE=45°,
在Rt△ABE中,
∵
=sin45°,
∴AB=
=3
,
∴平行四边形ABCD的周长l=2(AB+AD)=2×(6+3
)=12+6
.
∴AD=BC,AD∥BC,
∴∠ADE=∠CBF,
又∵AE⊥BD于E,CF⊥BD于F,
∴∠AED=∠CFB=90°,
在△AED和△CFB中,
|
∴△AED≌△CFB(AAS);
(2)在Rt△AED中,
∵∠ADE=30°,AE=3,
∴AD=2AE=2×3=6,
∵∠ABC=75°,∠ADB=∠CBD=30°
∴∠ABE=45°,
在Rt△ABE中,
∵
| AE |
| AB |
∴AB=
| AE |
| sin45° |
| 2 |
∴平行四边形ABCD的周长l=2(AB+AD)=2×(6+3
| 2 |
| 2 |
练习册系列答案
相关题目