题目内容
【题目】证明:同弧所对的圆周角等于它所对圆心角度数的一半.
【答案】证明见解析.
【解析】
根据圆心的位置分三种情形分别证明即可.
证明:①如图(1),当点O在∠BAC的一边上时,
∵OA=OC,
∴∠A=∠C,
∵∠BOC=∠A+∠C,
∴∠BAC=
∠BOC;
②如图(2)当圆心O在∠BAC的内部时,延长BO交⊙O于点D,连接CD,则
∠D=∠A(同弧或等弧所对的圆周角都相等),
∵OC=OD,
∴∠D=∠OCD,
∵∠BOC=∠D+∠OCD(三角形的一个外角等于与它不相等的两个内角的和),
∴∠BOC=2∠A,
即∠BAC=
∠BOC.
③如图(3),当圆心O在∠BAC的外部时,延长BO交⊙O于点E,连接CE,则
∠E=∠A(同弧或等弧所对的圆周角都相等),
∵OC=OE,
∴∠E=∠OCE,
∵∠BOC=∠E+∠OCE(三角形的一个外角等于与它不相邻的两个内角的和),
∴∠BOC=2∠A,
即∠BAC=
∠BOC.
![]()
练习册系列答案
相关题目