题目内容
如果等腰三角形的两边长分别为4和7,则三角形的周长为______.
如图,在梯形ABCD中,AD∥BC,∠ABC=60º,AB=DC=2,AD=1,R、P分别是BC、CD边上的动点(点R、B不重合,点P、C不重合),E、F分别是AP、RP的中点,设BR=x,EF=y,则下列图象中,能表示y与x的函数关系的图象大致是
A. B. C. D.
如图,正六边形ABCDEF的边长为2,则该正六边形的外接圆与内切圆所形成的圆环面积为________.
如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.
(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了,随即小强写出了如下的证明过程:
证明:如图1,取AB的中点M,连接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵点E,M分别为正方形的边BC和AB的中点
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分线
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.
(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.
如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于__.
人数相等的甲、乙两班参加体能素质测试,两班的平均分相同,S甲2=1.6,S乙2=2,则成绩比较稳定的是( )
A. 甲班 B. 乙班 C. 两班一样 D. 无法确定
如图,将矩形ABCD沿AE折叠,使D点落在BC边的F处,若∠BAF=60°,则∠DAE等于( )
A. 15° B. 30° C. 45° D. 60°
样本频数分布反映了( )
A. 样本数据的多少 B. 样本数据的平均水平
C. 样本数据的离散程度 D. 样本数据在各个小范围内数量的多少
化简:=_____.