题目内容
如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=
,PB=
,PC=
,则PD=
- A.2

- B.

- C.3

- D.

A
分析:用EF,BE,AB分别表示AP,BP,用CF,PF,DC分别表示DP,CP,得AP2+CP2=DP2+BP2,已知AP,BP,CP代入上式即可求DP.
解答:延长AB,DC,过P分作PE⊥AE,PF⊥DF,则CF=BE,
AP2=AE2+EP2,BP2=BE2+PE2,
DP2=DF2+PF2,CP2=CF2+FP2,
∴AP2+CP2=CF2+FP2+AE2+EP2,
DP2+BP2=DF2+PF2+BE2+PE2,
即AP2+CP2=DP2+BP2,
代入AP,BP,CP得DP=
=2
,
故选 A.
点评:本题考查了勾股定理在直角三角形中的运用,考查了正方形各边相等的性质,本题中求证AP2+CP2=DP2+BP2是解题的关键.
分析:用EF,BE,AB分别表示AP,BP,用CF,PF,DC分别表示DP,CP,得AP2+CP2=DP2+BP2,已知AP,BP,CP代入上式即可求DP.
解答:延长AB,DC,过P分作PE⊥AE,PF⊥DF,则CF=BE,
DP2=DF2+PF2,CP2=CF2+FP2,
∴AP2+CP2=CF2+FP2+AE2+EP2,
DP2+BP2=DF2+PF2+BE2+PE2,
即AP2+CP2=DP2+BP2,
代入AP,BP,CP得DP=
故选 A.
点评:本题考查了勾股定理在直角三角形中的运用,考查了正方形各边相等的性质,本题中求证AP2+CP2=DP2+BP2是解题的关键.
练习册系列答案
相关题目