搜索
题目内容
在△ABC中,AB=AC=10,BC=16,求tanB的值.
试题答案
相关练习册答案
解:如图,等腰△ABC中,AB=AC=10,BC=16,
过A作AD⊥BC于D,则BD=8,
在Rt△ABD中,AB=10,BD=8,则
AD=
=
=6,
故tanB=
=
=
.
分析:根据题意画出图形,由等腰三角形的性质求出BD的长,根据勾股定理求出AD的长,再根据锐角三角函数的定义即可求出tanB的值.
点评:本题考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理,涉及面较广,但难度适中.
练习册系列答案
寒假假期集训系列答案
寒假接力棒系列答案
寒假快乐假期新疆青少年出版社系列答案
寒假乐园辽宁师范大学出版社系列答案
寒假培优衔接系列答案
寒假培优衔接训练系列答案
寒假骑兵团学期总复习系列答案
寒假生活20天系列答案
寒假生活江西高校出版社系列答案
寒假生活三秦出版社系列答案
相关题目
(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
3
2
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.
(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.
如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB
1
C
1
的位置,AB
1
交BC于点D,B
1
C
1
交AC于点E.求证:AD=AE.
(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是( )
A.90°
B.100°
C.110°
D.120°
(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案