题目内容
如图,直线a∥b,∠1=70°,那么∠2的度数是( )
A. 130° B. 110° C. 70° D. 80°
如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D。
(1)求证:BE=CF ;
(2)当四边形ACDE为菱形时,求BD的长。
在的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有( )
A.1个 B.2个 C.3个 D.4个
如图,△ABC的顶点都是正方形网格中的格点,则tan∠ABC=_____________.
解分式方程,分以下四步,其中,错误的一步是( )
A. 方程两边分式的最简公分母是(x–1)(x+1)
B. 方程两边都乘以(x–1)(x+1),得整式方程2(x–1)+3(x+1)=6
C. 解这个整式方程,得x=1
D. 原方程的解为x=1
如图,已知:在△ABC中,∠A=90°,AB=AC=1,P是AC上不与A、C重合的一动点,PQ⊥BC于Q,QR⊥AB于R.
(1)求证:PQ=CQ;
(2)设CP的长为x,QR的长为y,求y与x之间的函数关系式及自变量x的取值范围,并在平面直角坐标系作出函数图象.
(3)PR能否平行于BC?如果能,试求出x的值;若不能,请简述理由.
计算:(16﹣2x)÷3
如图,在平面直角坐标系中,点A,B的坐标分别为A(,0),B(,0),且、满足,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)请直接写出C,D两点的坐标.
(2)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合) 的值是否发生变化?并说明理由.
(3)在坐标轴上是否存在一点M,使三角形MBC的面积与三角形ACD的面积相等?若存在直接写出点M的坐标,若不存在,试说明理由.
已知ABCD中,∠C=2∠B,则∠A= 度.