题目内容
请利用列表、描点、连线,的方法作出
的函数图象.
解:1、列表为:
| x | … | -2 | -1 | -0.5 | 0.5 | 1 | 2 | … |
| y= | … | -0.5 | -1 | -2 | 2 | 1 | 0.5 | … |
描点并连线为:![]()
分析:先列表把函数的对应点的坐标表示出来,再根据表中点的坐标在平面直角坐标系中描出对应的点,最后连线就可以得出函数的图象.
点评:本题考查了用描点法画反比例函数图象的方法,列表法的运用以及双曲线的图象特征.
练习册系列答案
相关题目
如图,OB、OC分别为∠ABC,∠ACB的平分线,∠BOC随着∠A的变化而变化.为探究∠A和∠BOC的关系,现采取如下两种方案,在变化过程中,设∠A为x°,∠BOC为y°.
方案甲:用量角器量出∠A、∠BOC的不断变化时的具体数据,并列表如下:
建立直角坐标系,并描点、连线,猜测y与x之间的函数关系,求出y与x的函数关系式.
方案乙:利用角平分线的性质及三角形内角和为180°的性质,直接进行计算,求出y与x之间的函数关系.
(1)若x=60°,则y= .(请直接写
出结果)
(2)请采用方案甲或方案乙中的一种进行解答,得到∠A与∠BOC之间的关系.
方案甲:用量角器量出∠A、∠BOC的不断变化时的具体数据,并列表如下:
| x | 10 | 20 | 30 | 40 | … |
| y | 95 | 100 | 105 | 110 | … |
方案乙:利用角平分线的性质及三角形内角和为180°的性质,直接进行计算,求出y与x之间的函数关系.
(1)若x=60°,则y=
(2)请采用方案甲或方案乙中的一种进行解答,得到∠A与∠BOC之间的关系.
如图,OB、OC分别为∠ABC,∠ACB的平分线,∠BOC随着∠A的变化而变化.为探究∠A和∠BOC的关系,现采取如下两种方案,在变化过程中,设∠A为x°,∠BOC为y°.
方案甲:用量角器量出∠A、∠BOC的不断变化时的具体数据,并列表如下:
| x | 10 | 20 | 30 | 40 | … |
| y | 95 | 100 | 105 | 110 | … |
方案乙:利用角平分线的性质及三角形内角和为180°的性质,直接进行计算,求出y与x之间的函数关系.
(1)若x=60°,则y=______.(请直接写
(2)请采用方案甲或方案乙中的一种进行解答,得到∠A与∠BOC之间的关系.
如图,OB、OC分别为∠ABC,∠ACB的平分线,∠BOC随着∠A的变化而变化.为探究∠A和∠BOC的关系,现采取如下两种方案,在变化过程中,设∠A为x°,∠BOC为y°.
方案甲:用量角器量出∠A、∠BOC的不断变化时的具体数据,并列表如下:
建立直角坐标系,并描点、连线,猜测y与x之间的函数关系,求出y与x的函数关系式.
方案乙:利用角平分线的性质及三角形内角和为180°的性质,直接进行计算,求出y与x之间的函数关系.
(1)若x=60°,则y=______.(请直接写出结果)
(2)请采用方案甲或方案乙中的一种进行解答,得到∠A与∠BOC之间的关系.
方案甲:用量角器量出∠A、∠BOC的不断变化时的具体数据,并列表如下:
| x | 10 | 20 | 30 | 40 | … |
| y | 95 | 100 | 105 | 110 | … |
方案乙:利用角平分线的性质及三角形内角和为180°的性质,直接进行计算,求出y与x之间的函数关系.
(1)若x=60°,则y=______.(请直接写出结果)
(2)请采用方案甲或方案乙中的一种进行解答,得到∠A与∠BOC之间的关系.