题目内容
(1)求它的侧面展开图的圆心角和表面积.
(2)若一甲出从A点出发沿着圆锥侧面行到母线SA的中点B,请你动脑筋想一想它所走的最短路线是多少?为什么?
分析:(1)利用圆锥的弧长等于底面周长得到圆锥的侧面展开图的圆心角;圆锥表面积=底面积+侧面积=π×底面半径2+π×底面半径×母线长;
(2)最短路线应放在平面内,构造直角三角形,求两点之间的线段的长度.
(2)最短路线应放在平面内,构造直角三角形,求两点之间的线段的长度.
解答:
解:(1)
=2π×10,
解得n=90°.
圆锥表面积=π×102+π×10×40=500πcm2.
(2)如右图,由圆锥的侧面展开图可见,甲虫从A点出发沿着圆锥侧面绕行到母线SA的中点B所走的最短路线是线段AB的长.
在Rt△ASB中,SA=40,SB=20,
∴AB=20
(cm).
∴甲虫走的最短路线的长度是20
cm.
| nπ×40 |
| 180 |
解得n=90°.
圆锥表面积=π×102+π×10×40=500πcm2.
(2)如右图,由圆锥的侧面展开图可见,甲虫从A点出发沿着圆锥侧面绕行到母线SA的中点B所走的最短路线是线段AB的长.
在Rt△ASB中,SA=40,SB=20,
∴AB=20
| 5 |
∴甲虫走的最短路线的长度是20
| 5 |
点评:用到的知识点为:圆锥的弧长等于底面周长;求立体图形中两点之间的最短路线长,一般应放在平面内,构造直角三角形,求两点之间的线段的长度.
练习册系列答案
相关题目