题目内容
(2012•西宁)如图(1),AB为⊙O的直径,C为⊙O上一点,若直线CD与⊙O相切于点
C,AD⊥CD,垂足为D.
(1)求证:△ADC∽△ACB;
(2)如果把直线CD向下平行移动,如图(2),直线CD交⊙O于C、G两点,若题目中的其他条件不变,且AG=4,BG=3,求tan∠DAC的值.
(1)求证:△ADC∽△ACB;
(2)如果把直线CD向下平行移动,如图(2),直线CD交⊙O于C、G两点,若题目中的其他条件不变,且AG=4,BG=3,求tan∠DAC的值.
分析:(1)连OC,根据切线的性质得到OC⊥CD,而AD⊥CD,则AD∥OC,根据平行线的性质得∠1=∠2,易得∠1=∠3,则∠2=∠3,又根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,根据三角形相似的判定即可得到结论;
(2)由于四边形ABGC为⊙O的内接四边形,根据圆的内接四边形的性质得∠B+∠ACG=180°,易得∠ACD=∠B,又∠ADC=∠AGB=90°,利用等角的余角相等得到∠DAC=∠GAB,在Rt△ABG中,AG=4,BG=3,根据正切的定义得到tan∠GAB=
=
,即可得到tan∠DAC的值.
(2)由于四边形ABGC为⊙O的内接四边形,根据圆的内接四边形的性质得∠B+∠ACG=180°,易得∠ACD=∠B,又∠ADC=∠AGB=90°,利用等角的余角相等得到∠DAC=∠GAB,在Rt△ABG中,AG=4,BG=3,根据正切的定义得到tan∠GAB=
| GB |
| GA |
| 3 |
| 4 |
解答:(1)证明:连OC,如图
∵直线CD与⊙O相切于C,
∴OC⊥CD,
又∵AD⊥CD,
∴AD∥OC,
∴∠1=∠2,
∵OC=OA,
∴∠1=∠3,
∴∠2=∠3,
又∵AB为⊙O的直径,
∴∠ACB=90°,
∴Rt△ADC∽Rt△ACB;
(2)解:∵四边形ABGC为⊙O的内接四边形,
∴∠B+∠ACG=180°,
而∠ACG+∠ACD=180°,
∴∠ACD=∠B,
而∠ADC=∠AGB=90°,
∴∠DAC=∠GAB,
在Rt△ABG中,AG=4,BG=3,
∴tan∠GAB=
=
,
∴tan∠DAC=
.
∵直线CD与⊙O相切于C,
∴OC⊥CD,
又∵AD⊥CD,
∴AD∥OC,
∴∠1=∠2,
∵OC=OA,
∴∠1=∠3,
∴∠2=∠3,
又∵AB为⊙O的直径,
∴∠ACB=90°,
∴Rt△ADC∽Rt△ACB;
(2)解:∵四边形ABGC为⊙O的内接四边形,
∴∠B+∠ACG=180°,
而∠ACG+∠ACD=180°,
∴∠ACD=∠B,
而∠ADC=∠AGB=90°,
∴∠DAC=∠GAB,
在Rt△ABG中,AG=4,BG=3,
∴tan∠GAB=
| GB |
| GA |
| 3 |
| 4 |
∴tan∠DAC=
| 3 |
| 4 |
点评:本题考查了圆的综合题:熟练掌握圆周角定理、圆的切线性质和圆的内接四边形的性质是解题的关键;同时运用三角形相似的判定方法和三角函数的定义解决问题.
练习册系列答案
相关题目