题目内容

如图所示,在边长为3的正方形ABCD中,⊙O1与⊙O2外切,且⊙O2分别于DA、DC边外切,⊙O1分别与BA、BC边外切,则圆心距,O1O2   
【答案】分析:通过作辅助线构造直角三角形用勾股定理作为相等关系列方程求解.
解答:解:如图所示,设⊙O1半径x,⊙O2半径y,
∵O1在∠ADC的平分线上;O2在∠ABC平分线上,而BD为正方形对角线,平分对角,
∴O1O2 在BD上,
∴∠ADB=∠DBA=45°,
∴DO1=x,BO2=y
则 DB=DO1+O1O2+O2B=x+y+(x+y)=3
解得x+y==6-3
故答案为:6-3
点评:主要考查了相切两圆中的有关计算问题.解题方法主要是利用正方形的性质构造直角三角形,用勾股定理作为相等关系列方程求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网