题目内容

已知抛物线y=x2-2bx+c(c>0)与y轴的交点为A,顶点为M(m,n).
(1)若c=2b-1,点M在x轴上,求c的值.
(2)若直线数学公式过点A,且与x轴交点为B,直线和抛物线的另一交点为P,且P为线段AB的中点.当n取得最大值时,求抛物线的解析式.

解:(1)把c=2b-1代入y=x2-2bx+c得:y=x2-2bx+2b-1,
∴M(m,n)的坐标为
∵M在x轴上,
,即b2-2b+1=0,
解得:b=1,
∴c=2b-1=1.

(2)过P作PD⊥x轴,
∵A(0,c),

∴B(2c,0),
,即
解得:
∵PD∥AD,

∵P为AB中点,

∴OD=c,

∴抛物线的解析式为:y=x2-2bx+2b-
===
∵-1<0,
∴二次函数开口向下,存在最大值,
∴当b=1时,n的最大值为


分析:(1)将c的值代入抛物线,确定抛物线的顶点坐标,再由点M在x轴上,可得关于b的方程,解出可得出b的值,继而得出c的值;
(2)过P作PD⊥x轴,根据直线解析式确定点B的坐标,联立抛物线与直线解析式求出交点坐标,由P为AB中点,可得,从而得出c的值,用含b的式子表示出抛物线解析式,表示出n的值,利用配方法求最值即可.
点评:本题考查了二次函数的综合,涉及了二次函数的顶点坐标公式、配方法求二次函数最值,解答本题关键是熟练运用等量代换的运用,难度较大,同学们注意培养自己解答综合题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网