题目内容

如图,在长方形ABCD中,DM:MC=2:1,AN=a,NB=b,DN是以A为圆心,a为半径的一段圆弧,NK是以B为圆心,b为半径的一段圆弧,则阴影部分的面积S=________.


分析:阴影部分的面积=边长为a+b,a的长方形的面积-半径为a的圆的面积-半径为b的圆的面积-直角边长为a-b,(a+b)的三角形的面积,把相关数值代入即可求解.
解答:由题意得,CD=AB=a+b,AD=BC=a,NB=BK=b,
∴CK=a-b,
∵DM:MC=2:1,
∴MC=(a+b),
∴阴影部分的面积=(a+b)a-×π×a2-×π×b2-×(a-b)×(a+b),
=a2+ab---(a2-b2),
=
故答案为:
点评:本题考查列代数式及化简,得到阴影部分的面积的等量关系解决本题的关键,易错点是得到各个图形相应的边长或半径.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网