题目内容
今年,6月12日为端午节.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小华和小明提出的问题.
(1)小华的问题解答:
(2)小明的问题解答:
先化简,再求值:(a﹣1+)÷(a2+1),其中a=﹣1.
下列关于单项式﹣的说法中,正确的是( )
A.系数是﹣,次数是2 B.系数是,次数是2
C.系数是﹣3,次数是3 D.系数是﹣,次数是3
函数与在同一直角坐标系中的图象可能是
如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是
A、26° B、116° C、128° D、154°
已知关于x的一元二次方程+2x+2k-2=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若k为正整数,求该方程的根.
圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为 .
阅读、操作与探究:
小亮发现一种方法,可以借助某些直角三角形画矩形,使矩形邻边比的最简形式(如4:6的最简形式为2:3)为两个连续自然数的比,具体操作如下:
如图1,Rt△ABC中,BC,AC,AB的长分别为3,4,5,先以点B为圆心,线段BA的长为半径画弧,交CB的延长线于点D,再过D,A两点分别作AC,CD的平行线,交于点E.得到矩形ACDE,则矩形ACDE的邻边比为 .
请仿照小亮的方法解决下列问题:
(1)如图2,已知Rt△FGH中,GH:GF:FH= 5:12:13,请你在图2中画一个矩形,使所画矩形邻边比的最简形式为两个连续自然数的比,并写出这个比值;
(2)若已知直角三角形的三边比为(n为正整数),则所画矩形(邻边比的最简形式为两个连续自然数的比)的邻边比为 .
如图,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,记,我们把k叫做这个菱形的“形变度”.若变形后的菱形有一个角是60°,则形变度k= .