题目内容
【题目】如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F. ![]()
(1)求证:CD是⊙O的切线.
(2)若
,求∠E的度数.
(3)连接AD,在(2)的条件下,若CD=
,求AD的长.
【答案】
(1)证明:如图1,连接OC,AC,CG,
![]()
∵AC=CG,
∴
,
∴∠ABC=∠CBG,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠OCB=∠CBG,
∴OC//BG,
∵CD⊥BG,
∴OC⊥CD,
∴CD是⊙O的切线;
(2)解:∵OC//BD,
∴△OCF∽△BDF,△EOC∽△EBD,
∴
,
∴
,
∵OA=OB,
∴AE=OA=OB,
∴OC=
OE,
∵∠ECO=90°,
∴∠E=30°
(3)解:如图2,过A作AH⊥DE于H,
![]()
∵∠E=30°
∴∠EBD=60°,
∴∠CBD=
EBD=30°,
∵CD=
,
∴BD=3,DE=3
,BE=6,
∴AE=
BE=2,
∴AH=1,
∴EH=
,
∴DH=2
,
在Rt△DAH中,AD=
=
=
.
【解析】(1)如图1,连接OC,AC,CG,由圆周角定理得到∠ABC=∠CBG,根据同圆的半径相等得到OC=OB,于是得到∠OCB=∠OBC,等量代换得到∠OCB=∠CBG,根据平行线的判定得到OC//BG,即可得到结论;(2)由OC//BD,得到△OCF∽△BDF,△EOC∽△EBD,得到
,
,根据直角三角形的性质即可得到结论;(3)如图2,过A作AH⊥DE于H,解直角三角形得到BD=3,DE=3
,BE=6,在Rt△DAH中,AD=
=
=
.
【题目】某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时。其它主要参考数据如下:
运输工具 | 途中平均速度(千米/时) | 运费(元/千米) | 装卸费用(元) |
火车 | 100 | 15 | 2000 |
汽车 | 80 | 20 | 900 |
(1)如果汽车的总支出费用比火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答.
(2)如果A市与某市之间的距离为S千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,你若是某市水果批发部门的经理,要将这种水果从A市运往本市销售。你将选择哪种运输方式比较合算呢?