题目内容
如图,在△ABC中,CD是AB边上的中线,已知∠B=45°,tan∠ACB=3,AC=,求:
(1)△ABC的面积;
(2)sin∠ACD的值.
(3分)不等式的解集是 .
如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.
(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.
(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.
(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.
如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为( )
A、2 B、3 C、4 D、6
在平面直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为( )
A、(2,-3) B、(2,3) C、(3,-2) D、(-2,-3)
(1)解不等式:2+≤x;
(2)解方程组:
据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 .
某日,小敏、小君两人约好去奥体中心打球.小敏13:00从家出发,匀速骑自行车前往奥体中心,小君13:05从离奥体中心6000m的家中匀速骑自行车出发.已知小君骑车的速度是小敏骑车速度的1.5倍.设小敏出发x min后,到达离奥体中心y m的地方,图中线段AB表示y与x之间的函数关系.
(1)小敏家离奥体中心的距离为 m;她骑自行车的速度为 m/min;
(2)求线段AB所在直线的函数表达式;
(3)小敏与小君谁先到奥体中心,要等另一人多久?
已知方程组的解为,则一次函数y=-x+1和y=2x-2的图象的交点坐标为