题目内容
若(m+1)x|m|+1+6mx-2=0是关于x的一元二次方程,则m=________.
如图,长方形纸片ABCD的边长AB=,AD=2,将长方形纸片沿EF折叠,使点A与点C重合,如果∠BCE=30°,则∠DFE的大小是( )
A. 120° B. 110° C. 115° D. 105°
三个互不相等的整数的积为15,则这三个数的和的最大值等于_______.
如图,抛物线y=ax2+bx+c与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等,直线y=3x-7与这条抛物线交于两点,其中一点横坐标为4,另一点是这条抛物线的顶点M.
(1)求顶点M的坐标.
(2)求这条抛物线对应的函数解析式.
(3)P为线段BM上一点(P不与点B,M重合),作PQ⊥x轴于点Q,连接PC,设OQ=t,四边形PQAC的面积为S,求S与t的函数解析式,并直接写出t的取值范围.
(4)在线段BM上是否存在点N,使△NMC为等腰三角形?若存在,求出点N的坐标,若不存在,说明理由.
如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为________.
已知圆锥侧面展开图的面积为65π cm2,弧长为10π cm,则圆锥的母线长为( )
A. 5 cm B. 10 cm C. 12 cm D. 13 cm
Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;
(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?
(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.
如图,∠CAD和∠CBD的平分线相交于点P.设∠CAD、∠CBD、∠C、∠D的度数依次为a、b、c、d,用仅含其中2个字母的代数式来表示∠P的度数:_____.
若n边形的内角和是它的外角和的2倍,则n= .