题目内容
如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为 .
![]()
考点:
中点四边形.
分析:
有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH矩形,根据矩形的面积公式解答即可.
解答:
解:∵点E、F分别为四边形ABCD的边AD、AB的中点,
∴EF∥BD,且EF=
BD=3.
同理求得EH∥AC∥GF,且EH=GF=
BD,
又∵AC⊥BD,
∴EF∥GH,FG∥HE且EF⊥FG.
四边形EFGH是矩形.
∴四边形EFGH的面积=EF•EH=3×4=12,即四边形EFGH的面积是12.
故答案是:12.
点评:
本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:
(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形.
练习册系列答案
相关题目