题目内容
【题目】如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.
(1)求证:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的长.
![]()
【答案】(1)证明见试题解析;(2)
.
【解析】
试题分析:(1)由AD∥BC,知∠ADB=∠DBC,根据折叠的性质∠ADB=∠BDF,所以∠DBC=∠BDF,得BE=DE,即可用AAS证△DCE≌△BFE;
(2)在Rt△BCD中,CD=2,∠ADB=∠DBC=30°,知BC=
,在Rt△BCD中,CD=2,∠EDC=30°,知CE=
,所以BE=BC﹣EC=
.
试题解析:(1)∵AD∥BC,∴∠ADB=∠DBC,根据折叠的性质∠ADB=∠BDF,∠F=∠A=∠C=90°,∴∠DBC=∠BDF,∴BE=DE,在△DCE和△BFE中,∵∠BEF=∠DEC,∠F=∠C,BE=DE,∴△DCE≌△BFE;
(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=
,在Rt△BCD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴
,∴CE=
,∴BE=BC﹣EC=
.
![]()
练习册系列答案
相关题目