题目内容
若a2-b2+2=a2+b2=5,则a4-b4=________.
△ABC的三边分别为a,b,c,若a2+b2+c2=ab+bc+ca,则△ABC为
A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形
若a2+b2-3ab=(a+b)2+A=(a-b)2+B,则A=________,B=________.若(C+2xy)=4x2y2-a2b2,则C+D=________.
问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.问题解决如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.解:由图可知:M=a2+b2,N=2ab.∴M-N=a2+b2-2ab=(a-b)2.∵a≠b,∴(a-b)2>0.∴M-N>0.∴M>N.类比应用【小题1】已知:多项式M =2a2-a+1 ,N =a2-2a.试比较M与N的大小.【小题2】已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。 ①这样的长方形可以画 个;②所画的长方形中哪个周长最小?为什么?拓展延伸 已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?