题目内容
若代数式有意义,则实数x的取值范围是( )
A. x≥-1 B. x≥-1且x≠3
C. x>-1 D. x>-1且x≠3
对于函数y=﹣x2﹣2x﹣1,请回答下列问题:
(1)图象的对称轴,顶点坐标各是什么?
当x取何值时,函数有最大(小)值,函数最大(小)值是多少?
(2)求抛物线与x轴的交点,与y轴的交点坐标是什么?
假设有足够多的黑白围棋子,摆成一个“中”字,下列图形中,第①个图形中有4 枚黑子和4枚白子,第②个图形中有6枚黑子和11枚白子,第③个图形中有8枚黑子和18枚白子按此规律排列,则第⑧个图形中黑子和白子的枚数分别为( )
A. 14和48 B. 16和48 C. 18和53 D. 18和67
若有意义,则点A(a, )在第______象限.
甲、乙两人计算a+的值,当a=5的时候得到不同的答案,甲的解答是a+=a+=a+1-a=1;乙的解答是a+=a+=a+a-1=2a-1=9.下列判断正确的是( )
A. 甲、乙都对 B. 甲、乙都错 C. 甲对,乙错 D. 甲错,乙对
下面是数学课堂的一个学习片段, 阅读后, 请回答下面的问题:
学习勾股定理有关内容后, 张老师请同学们交流讨论这样一个问题: “已知直角三角形ABC的两边长分别为3和4, 请你求出第三边.”
同学们经片刻的思考与交流后, 李明同学举手说: “第三边长是5”; 王华同学说: “第三边长是.” 还有一些同学也提出了不同的看法……
(1)假如你也在课堂上, 你的意见如何? 为什么?
(2)通过上面数学问题的讨论, 你有什么感受? (用一句话表示)
甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.
(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)
(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是 (请直接写出结果).
某超市对今年前两个季度每月销售总量进行统计,为了更清楚地看出销售总量的总趋势是上升还是下降,应选用 统计图来描述数据.