题目内容
以下是2007年8月份的日历,如果用长方形所示的方法框中4个数,若它们的和为100,则这四个数中最大的一个数是________.
29
分析:由图中日历的规律可以看出同一行相邻两个数之差为1,同一列相邻两个数之差为7;所以设四个数中最大的一个数是x,则另外三个数为:x-1,x-7,x-8,由题意得出,等量关系为:这四个数的和为:100,根据等量关系列出方程即可.
解答:设四个数中最大的一个数为:x,那么另外三个数为:x-1,x-7,x-8
由题意得:x+x-1+x-7+x-8=100,
解之得:x=29
所以,这四个数中最大的一个数为:29.
点评:解题的关键在于理解日历的长方形框中4个数的关系,根据等量关系列出方程,求解.
分析:由图中日历的规律可以看出同一行相邻两个数之差为1,同一列相邻两个数之差为7;所以设四个数中最大的一个数是x,则另外三个数为:x-1,x-7,x-8,由题意得出,等量关系为:这四个数的和为:100,根据等量关系列出方程即可.
解答:设四个数中最大的一个数为:x,那么另外三个数为:x-1,x-7,x-8
由题意得:x+x-1+x-7+x-8=100,
解之得:x=29
所以,这四个数中最大的一个数为:29.
点评:解题的关键在于理解日历的长方形框中4个数的关系,根据等量关系列出方程,求解.
练习册系列答案
相关题目
小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:
| 复习日记卡片 |
| 内容:一元二次方程解法归纳 时间:2007年6月×日 |
| 举例:求一元二次方程x2-x-1=0的两个解 |
| 方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解 解方程:x2-x-1=0. 解: |
方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程x2-x-1=0的解看成是二次函数y= |
方法三:利用两个函数图象的交点求解 (1)把方程x2-x-1=0的解看成是一个二次函数y= (2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解. |
小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:
| 复习日记卡片 |
| 内容:一元二次方程解法归纳 时间:2007年6月×日 |
| 举例:求一元二次方程x2-x-1=0的两个解 |
| 方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解 解方程:x2-x-1=0. 解: |
方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程x2-x-1=0的解看成是二次函数y=的图象与x轴交点的横坐标,即x1,x2就是方程的解. |
方法三:利用两个函数图象的交点求解 (1)把方程x2-x-1=0的解看成是一个二次函数y=的图象与一个一次函数y=图象交点的横坐标; (2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解. |
小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:
| 复习日记卡片 |
| 内容:一元二次方程解法归纳 时间:2007年6月×日 |
| 举例:求一元二次方程x2-x-1=0的两个解 |
| 方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解 解方程:x2-x-1=0. 解: |
方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程x2-x-1=0的解看成是二次函数y=______的图象与x轴交点的横坐标,即x1,x2就是方程的解. |
方法三:利用两个函数图象的交点求解 (1)把方程x2-x-1=0的解看成是一个二次函数y=______的图象与一个一次函数y=______图象交点的横坐标; (2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解. |
小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:
| 复习日记卡片 |
| 内容:一元二次方程解法归纳 时间:2007年6月×日 |
| 举例:求一元二次方程x2-x-1=0的两个解 |
| 方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解 解方程:x2-x-1=0. 解: |
方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程x2-x-1=0的解看成是二次函数y=______的图象与x轴交点的横坐标,即x1,x2就是方程的解. |
方法三:利用两个函数图象的交点求解 (1)把方程x2-x-1=0的解看成是一个二次函数y=______的图象与一个一次函数y=______图象交点的横坐标; (2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解. |
(2007•丽水)小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:
| 复习日记卡片 |
| 内容:一元二次方程解法归纳 时间:2007年6月×日 |
| 举例:求一元二次方程x2-x-1=0的两个解 |
| 方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解 解方程:x2-x-1=0. 解: |
方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程x2-x-1=0的解看成是二次函数y=______的图象与x轴交点的横坐标,即x1,x2就是方程的解. |
方法三:利用两个函数图象的交点求解 (1)把方程x2-x-1=0的解看成是一个二次函数y=______的图象与一个一次函数y=______图象交点的横坐标; (2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解. |