题目内容

在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则SAFE:S四边形ABCE为(  )

A.3:4 B.4:3 C.7:9 D.9:7

 

D

【解析】

试题分析:∵四边形ABCD是平行四边形,

∴AE∥BC,AD=BC,

∴△FAE∽△FBC,

∵AE:ED=3:1,

∴S△AFE:S四边形ABCE=9:7.

故选:D.

考点:1、平行四边形的性质;2、相似三角形的判定与性质.

 

练习册系列答案
相关题目

倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”及后面的问题.

习题解答:

习题 如图(1),点E、F分别在正方形ABCD的边BC、CD上,EAF=45°,连接EF,则EF=BE+DF,说明理由.

解答:正方形ABCD中,AB=AD,BAD=ADC=B=90°,

ABE绕点A逆时针旋转90°至ADE′,点F、D、E′在一条直线上.

∴∠E′AF=90°﹣45°=45°=EAF,

AE′=AE,AF=AF

∴△AE′F≌△AEF(SAS)

EF=E′F=DE′+DF=BE+DF.

习题研究

观察分析:观察图(1),由解答可知,该题有用的条件是ABCD是四边形,点E、F分别在边BC、CD上;AB=AD;③∠B=D=90°;④∠EAF=BAD.

类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B=D时,还有EF=BE+DF吗?

研究一个问题,常从特例入手,请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当BAD=120°,EAF=60°时,还有EF=BE+DF吗?

(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B+D=180,EAF=BAD时,EF=BE+DF吗?

归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题: 在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B+D=180,EAF=BAD时,则EF=BE+DF 

 

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网