题目内容
如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.
(1)求证:CF是⊙O的切线; (2)若AE=4,tan∠ACD= ,求AB和FC的长.
直线y=x+2与y轴的交点坐标为________.
如图,已知抛物线与轴、轴分别相交于点A(-1,0)和B(0,3),其顶点为D.
(1)求这条抛物线的解析式;
(2)若抛物线与轴的另一个交点为E,求△ODE的面积;抛物线的对称轴上是否存在点P使得△PAB的周长最短.若存在请求出点P的坐标,若不存在说明理由.
一次函数与二次函数在同一直角坐标系中的图象可能是( )
A. B.
C. D.
用配方法将方程变形为的过程中,其中m的值正确的是( )
A. 17 B. 15 C. 9 D. 7
如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为_____米(结果保留整数,测角仪忽略不计,≈1.414,≈1.732)
已知关于的一元二次方程的一个根为,则另一个根是_________.
如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),B(2,0),C(-3,-1).
(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法),并写出点A1,B1,C1的坐标;
(2)求△ABC的面积.
如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是( )
A.25° B.30° C.35° D. 40°