题目内容
如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC的垂直平分线分别与AD、BC相交于点E、F,连接AF。
求证:AE=AF。
![]()
证明:连接CE。
∵AD∥BC,∴∠AEO=∠CFO,∠EAO=∠FCO,。
又∵AO=CO,∴△AEO≌△CFO(AAS)。
∴AE=CF。∴四边形AECF是平行四边形。
又∵EF⊥AC,∴平行四边形AECF是菱形。
∴AE=AF。
练习册系列答案
相关题目
题目内容
如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC的垂直平分线分别与AD、BC相交于点E、F,连接AF。
求证:AE=AF。
![]()
证明:连接CE。
∵AD∥BC,∴∠AEO=∠CFO,∠EAO=∠FCO,。
又∵AO=CO,∴△AEO≌△CFO(AAS)。
∴AE=CF。∴四边形AECF是平行四边形。
又∵EF⊥AC,∴平行四边形AECF是菱形。
∴AE=AF。