题目内容
如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是
A. SSS B. SAS C. AAS D. ASA
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=AB;
(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MNMC的值.
如果把中的x与y都扩大为原来的10倍,那么这个代数式的值( )
A. 扩大为原来的10倍 B. 扩大为原来的5倍
C. 缩小为原来的 D. 不变
若关于x的分式方程无解,则m的值为 .
如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为( )
A. 65° B. 70° C. 75° D. 85°
阅读材料:已知,如图(1),在面积为S的△ABC中, BC=a,AC=b, AB=c,内切圆O的半径为r连接OA、OB、OC,△ABC被划分为三个小三角形.
∴.
(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;
(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.
方程x2=x的解是______________.
如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以AC边上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.
(1)求证:BD是⊙O的切线;
(2)若AB=,E是半圆上一动点,连接AE,AD,DE.填空:
①当的长度是____时,四边形ABDE是菱形;
②当的长度是_____时,△ADE是直角三角形.
如图,△ABC内接于⊙O,CD是⊙O的直径,∠BCD=54°,则∠A的度数是( )
A. 36° B. 33° C. 30° D. 27°