题目内容
【题目】如图,矩形ABCD为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB边的长度为x米,矩形ABCD的面积为y平方米.
(1)求y与x之间的函数关系式?(不要求写自变量的取值范围);
(2)求矩形ABCD的最大面积.![]()
【答案】解:(1)y=(16﹣x)x=﹣x2+16x;
(2)∵y=﹣x2+16x,
∴y=﹣(x﹣8)2+64.
∵0<x<16,
∴当x=8时,y的最大值为64.
答:矩形ABCD的最大面积为64平方米.
【解析】(1)设AB边的长度为x米,CB的长为(16﹣x)米,利用矩形的面积公式列出矩形面积y与x的关系式;
(2)利用配方法求得函数的最大值即可.
练习册系列答案
相关题目