题目内容
要使有意义,则x应满足( )
A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤3
如图母亲节那天很多同学给妈妈准备了鲜花和礼物,从图中信息可知则买5束鲜花 和5个礼盒的总价为 元.
下图能说明∠1>∠2的是( )
如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为 。
如图,已知⊙O的半径是R.C,D是直径AB同侧圆周上的两点,弧AC的度数为96°,弧BD的度数为36°,动点P在AB上,则PC+PD的最小值为( )
A.2R B.R C.R D.R
准备两组相同的牌,每组三张大小一样,三张牌的牌面数字分别为-1,0,1.从每组中各模出一张牌.
(1)两张牌的牌面数字和等于1的概率是多?
(2)两张牌的牌面数字和等于几的概率最大?
(3)两张牌的牌面数字和大于0的概率是多少
在菱形ABCD中,DE⊥AB,cosA=,BE=2,则tan∠DBE的值是 .
综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(-2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.
(1)求抛物线W的解析式及顶点D的坐标;
(2)将抛物线W和OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和O′A′B′C′,在向下平移的过程中,设O′A′B′C′与OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;
(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于( )
A. B. C. D.