题目内容
①②?③
.分析:观察三个条件都是围绕切线的性质(连接OA),等角的余角相等,等边对等角来进行求解的,可任选两个按上述思路进行求解.
解答:解:我的命题是:①②?③,
证明:连接OA,则OA⊥DA,
∵DA=DC,
∴∠DAC=∠DCA,
∵OA=OB,
∴∠B=∠OAB;
∵∠OAB+∠DAC=90°,
又∵∠OCB=∠DCA,
∴∠B+∠OCB=90°,
∴BO⊥CO.
证明:连接OA,则OA⊥DA,
∵DA=DC,
∴∠DAC=∠DCA,
∵OA=OB,
∴∠B=∠OAB;
∵∠OAB+∠DAC=90°,
又∵∠OCB=∠DCA,
∴∠B+∠OCB=90°,
∴BO⊥CO.
点评:本题主要考查了切线的性质,根据等角的余角相等,等边对等角进行求解是本题的基本思路.
练习册系列答案
相关题目