题目内容
将宽2cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是 .
【答案】分析:首先作QH⊥PA,垂足为H,则QH=2cm,易证得△APQ为等边三角形,然后利用三角函数即可求得PQ的长.
解答:
解:如图,作QH⊥PA,垂足为H,则QH=2cm,
由平行线的性质,得∠DPA=∠BAC=60°,
由折叠的性质,得∠DPQ+∠APQ=180°,
即∠DPA+∠APQ+∠APQ=180°,60°+2∠APQ=180°,
∴∠APQ=60°,
又∵∠PAQ=∠BAC=60°,
∴△APQ为等边三角形,
在Rt△PQH中,sin∠HPQ=
,
∴PQ=
=
cm.
故答案为:
cm.
点评:此题考查了折叠的性质、等边三角形的判定与性质以及特殊角的三角函数问题.此题难度适中,注意掌握数形结合思想应用,注意掌握折叠前后图形的对应关系,注意证得△APQ为等边三角形是解此题的关键.
解答:
由平行线的性质,得∠DPA=∠BAC=60°,
由折叠的性质,得∠DPQ+∠APQ=180°,
即∠DPA+∠APQ+∠APQ=180°,60°+2∠APQ=180°,
∴∠APQ=60°,
又∵∠PAQ=∠BAC=60°,
∴△APQ为等边三角形,
在Rt△PQH中,sin∠HPQ=
∴PQ=
故答案为:
点评:此题考查了折叠的性质、等边三角形的判定与性质以及特殊角的三角函数问题.此题难度适中,注意掌握数形结合思想应用,注意掌握折叠前后图形的对应关系,注意证得△APQ为等边三角形是解此题的关键.
练习册系列答案
相关题目