题目内容
已知如图,在△ABC中,∠A=30°,∠C=105°,AC=
,求AB的长.
![]()
解:在△ABC中,∠A=30°,∠C=105°
∴∠B=45°,
过C作CD⊥AB于D,
∴∠ADC=∠BDC=90°,
∵∠B=45°,
∴∠BCD=∠B=45°,
∴CD=BD,
∵∠A=30°,AC=2
,
∴CD=
,
∴BD=CD=
,
由勾股定理得:AD=
=3,
∴AB=AD+BD=3+
.
练习册系列答案
相关题目
已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
| x | … | 0 | 1 | 2 | 3 | … |
| y | … | 5 | 2 | 1 | 2 | … |
点A(x1,y1)、B(x2,y2)在函数的图象上,则当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是( )
A.y1≥y2 B.y1>y2 C.y1<y2 D.y1≤y2