题目内容
到三角形三条边的距离都相等的点是这个三角形的( )
A. 三条中线的交点 B. 三条高的交点
C. 三条边的垂直平分线的交点 D. 三条角平分线的交点
如图,中,,是边的中点,是延长线上一点,平分,交于点,求证:四边形是矩形.
下列说法中,正确的有( )
①过两点有且只有一条直线;②有AB=MA+MB,AB<NA+NB,则点M在线段AB上,点N在线段AB外;③一条射线把一个角分成两个角,这条射线叫这个角的平分线;④40°50′=40.5°;⑤不相交的两条直线叫做平行线.
A. 1个 B. 2个 C. 3个 D. 4个
已知直角三角形的两直角边a,b满足+(b﹣8)2=0,则斜边c上中线的长为_____.
的算术平方根是_____.
探究
问题1 已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=kDF,则k的值为 .
拓展
问题2 已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.
推广
问题3 如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.
如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.且AF=5,则DC=_____.
如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.
(1)求点A的坐标;
(2)求抛物线的解析式;
(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
在△ABC和△DEF中,已知∠C =∠D, ∠B =∠E,要判断这两个三角形全等,还需添加条件( )
A. AB=ED. B. AB=FD. C. AC=FD. D. ∠A =∠F.