题目内容
如图,△ABC是等腰直角三角形,∠C=90°,点D是AB的中点,点E,F分别在BC,AC上,且AF=CE.
(1)填空:∠A的度数是 .
(2)探究DE与DF的关系,并给出证明.
解方程:=3.
如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为【 】
A. 2 B. C. D. 1
一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是_____.
矩形、菱形、正方形都具有的性质是( )
A. 对角线相等 B. 对角线互相平分
C. 对角线互相垂直 D. 对角线平分对角
如图,OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,点M在OA上,点N在OB上,且PM=PN.求证:EM=FN.
因式分【解析】ab2﹣a=_____.
某中学在全校学生中开展了“地球—我们的家园”为主题的环保征文比赛,评选出一、二、三等奖和优秀奖。根据奖项的情况绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)求校获奖的总人数,并把条形统计图补充完整;
(2)求在扇形统计图中表示“二等奖” 的扇形的圆心角的度数;
(3)获得一等奖的4名学生中有3男1女,现打算从中随机选出2名学生参加颁奖活动,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率﹒
如图,AB是⊙O的直径,点F,C是⊙O上两点,且点C是的中点,连接AC,AF,过点C作CD⊥AF,垂足为点D.
(1)求证:CD是⊙O的切线;
(2)若AB=10,AC=8,求DC的长.