题目内容
若是整数,则正整数n的最小值是_____.
南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元.(销售利润销售价进货价)
(1) 求y与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;
(2) 假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;
(3) 当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?
(1)解方程:x(x+3)=–2;
(2)计算:sin45°+3cos60°–4tan45°.
如图,在平面直角坐标系中,四边形OABC为矩形,点A(0,8),C(6,0).动点P从点B出发,以每秒1个单位长的速度沿射线BC方向匀速运动,设运动时间为t秒.
(1)当t= s时,以OB、OP为邻边的平行四边形是菱形;
(2)当点P在OB的垂直平分线上时,求t的值;
(3)将△OBP沿直线OP翻折,使点B的对应点D恰好落在x轴上,求t的值.
(1)计算:;
(2)先化简,再求值:( +)÷,其中x=2.
如图,在平面直角坐标系中,正方形ABCD的顶点A(1,1),B(1,﹣1),C(﹣1,﹣1),D(﹣1,1),y轴上有一点P(0,2),作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此规律操作下去,则点P2017的坐标为( )
A. (2,0) B. (0,2) C. (0,﹣2) D. (﹣2,0)
如图,已知抛物线过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D.
(1)求抛物线的解析式;
(2)设点M(1,m),当MB+MD的值最小时,求m的值;
(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;
(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.
如图,水平地面上有一面积为30cm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面.将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是( )
A. cm B. cm C. cm D. 30cm
关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是( )
A. m< B. m≤ C. m> D. m≥